Copyright 1970 by the American Chemical Society and reprinted by permission of the copyright owner.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, BRIHGAM YOUNG UNIVERISTY, PROVO, UTAH 84601

High-Pressure Synthesis of Lutetium Diantimonide

By Norman L. Eatough¹ and H. Tracy Hall

Received September 3, 1969

The synthesis of all the rare earth diantimonides with the exception of $EuSb_2$ and $LuSb_2$ has been reported previously. Diantimonides from $LaSb_2$ to $SmSb_2$ can be prepared by conventional methods² while those from $GdSb_2$ to $TmSb_2$ require high-pressure techniques.³

In previous work we investigated all of the rare earth-antimony systems at a mixture ratio of 1 mol of rare earth:2 mol of antimony at pressure up to 70 kbars.³ Since then the Yb + 2Sb and Lu + 2Sb systems have been investigated at higher pressures. No phases other than the ZrSi₂ structure of YbSb₂⁴ were found in the Yb + 2Sb system up to 90 kbars and 1500°. In the Lu + 2Sb system, LuSb₂ of the high-pressure orthorhombic type found in GdSb₂ through TmSb₂ was synthesized at 73 kbars and 1000°. No other phases were found up to 90 kbars and 1500°.

Experimental Section

Experimental procedure and sample geometry were essentially the same as has already been described elsewhere³ except that a tetrahedral press with 0.5-in. anvils was used to obtain pressures above 70 kbars.^{5,6} Pressures above 70 kbars were calibrated by taking the Bi(III)-Bi(IV) transition pressure to be 77 kbars.

A Debye-Scherrer powder diffraction pattern was taken using a 143-mm camera with copper X-ray tube and nickel filter. The \emph{d} values were calculated using $\lambda(K\alpha)$ 1.5418 and $\lambda(K\alpha_1)$ 1.54050.

Results

The high-pressure orthorhombic form of LuSb_2 was made from the elements at 73 kbars and 1000° or at higher pressures and temperatures. A Debye-Scherrer powder diffraction pattern for LuSb^2 is given in Table 1. This powder pattern indexed to an orthorhombic structure with lattice constants of a=

 5.835 ± 0.006 , $b=3.244\pm0.004$, and $c=7.885\pm0.009$ Å.

Table I
Powder Diffraction Data for LuSb₂

1000	ici Diiiiaciio	d, Å	
hkl	$I_{ m obsd}$	Obsd	Calcd
011	vvw	3.09	3.00
110	vvw	2.85	2.84
111	vvs	2.68	2.67
003	vw	2.58	2.63
112	vvs	2.30	2.30
113	vw	1.918	1.927
020	S	1.618	1.622
114	S	1.606	1.618
021	vvw	1.551	1.588
105	m	1.521	1.522
401	m	1.434	1.434
221	vvw	1.396	1.395
402	W	1.364	1.386
106	vvw	1.294	1.282
024	VS	1.257	1.252
413	vvw	1.180	1.187
025	W	1.134	1.131
421	W	1.075	1.074
422	W	1.046	1.046
306	vw	1.036	1.032
226	W	0.9627	0.9637
034	W	0.9488	0.9480
610	vvw	0.9305	0.9315
522	vw	0.9215	0.9210
523	W	0.8907	0.8911
109,431	vvw	0.8644	0.8649
417	vw	0.8599	0.8597
209	vw	0.8390	0.8391
621	vw	0.8303	0.8294
622	vw	0.8162	0.8160
530	w	0.7934	0.7931
712	W	0.7908	0.7909
240	W	0.7184	0.7813
241,532	W	0.7772	0.777

Using data from this work and the previous investigation³ a graph of the variation of minimum pressure of formation for the high-pressure orthorhombic form of the rare earth diantimonides of GdSb₂ to LuSb₂ as a function of ionic radius⁷ is shown in Figure 1. It is seen that GdSb₂, TbSb₂, and DySb₂ all require about the same pressure for synthesis but the heavier rare earths require somewhat higher pressures.

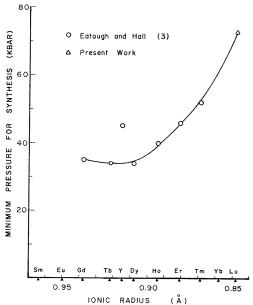


Figure 1.—Minimum pressure required for synthesis of highpressure orthorhombic type rare earth diantimonides.

According to Gschneidner and Valletta⁸ if the pressure required for synthesis increases with the atomic number of the rare earth, there must be 4f-electron participation in the chemical bonding. If it decreases with increasing atomic number, there is no 4f bonding and crystal structure is determined by size effects only. It appears that in this system both the size effect and 4f bonding are important for GdSb₂, TbSb₂, and DySb₂, but 4f bonding becomes increasingly important for the heavier rare earths.

The diantimonide of yttrium required about 10 kbars higher pressure for synthesis than would be predicted by its ionic radius. This same effect has been observed in other yttrium systems. There are, of course, no 4f electrons in yttrium.

Acknowledgment.- Thanks are extended to the Army Research Office (Durham) for financial support of this research.

⁷ D. H. Templeton and C. H. Dauben, *J. Am. Chem. Soc.*, **76**, 5327 (1954).

⁸ K. A. Gschneidner, Jr. and R. M. Valletta, *Acta Met.*, **16**, 477 (1968)

¹ California State Polytechnic College, San Luis Obispo, Calif.

² R. Wang and H. Steinfink, *Inorg. Chem.*, **6**, 1685 (1967).

³ N. L. Eatough and H. T. Hall, *ibid.*, **8**, 327 (1967).

⁴ R. E. Bodnar and H. Steinfink, *ibid.*, **6**, 327 (1967)

⁵ H. T. Hall, Rev. Sci. Instr., **29**, 267 (1958).

⁶ H. T. Hall, *ibid.*, **33**, 1278 (1962).

⁹ A. W. Webb, Ph.D. Dissertation, Brigham Young University, May 1969.